Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

9701/35
Paper 3 Advanced Practical Skills 1
May/June 2017
2 hours
Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 11 printed pages and 1 blank page.

BLANK PAGE

1 Sulfur forms the peroxodisulfate anion, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$. This ion can oxidise iodide ions, I^{-}, to iodine, I_{2}, as shown in the equation.

$$
2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

You will carry out a series of experiments to investigate how the rate of this reaction is affected by changing the concentration of the solutions.

The rate can be measured by adding thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, and starch indicator. As the reaction between $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ and I^{-}occurs iodine is produced, but it reacts immediately with the thiosulfate.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

When all the thiosulfate has reacted, the iodine will remain in the mixture and cause the starch indicator to turn blue-black. The rate of reaction may be determined by timing how long it takes the reaction mixture to turn blue-black.

FA 1 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium peroxodisulfate, $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$.
FA 2 is $1.00 \mathrm{moldm}^{-3}$ potassium iodide, KI.
FA 3 is $0.00500 \mathrm{moldm}^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
starch indicator

Read through the instructions carefully and prepare a table for your results on page 4 before starting any practical work.
(a) Method

Experiment 1

- Fill the burette labelled FA 1 with FA 1.
- Use the pen to label one of the $100 \mathrm{~cm}^{3}$ beakers 'A' and the other $100 \mathrm{~cm}^{3}$ beaker ' \mathbf{B} '.
- Run $20.00 \mathrm{~cm}^{3}$ of FA 1 from the burette into beaker \mathbf{A}.
- Use the measuring cylinder to add $20.0 \mathrm{~cm}^{3}$ of FA 2 into beaker B.
- Use the measuring cylinder to add $10.0 \mathrm{~cm}^{3}$ of FA 3 to beaker B.
- Add 10 drops of starch indicator to beaker \mathbf{B}.
- Add the contents of beaker \mathbf{A} to beaker \mathbf{B} and start timing immediately.
- Stir the mixture once and place the beaker on a white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second in your results table.
- Wash out both beakers and shake to remove excess water.

Experiment 2

- Fill a second burette with distilled water.
- Run $10.00 \mathrm{~cm}^{3}$ of FA 1 into beaker A.
- Run $10.00 \mathrm{~cm}^{3}$ of distilled water into beaker \mathbf{A}.
- Use the measuring cylinder to add $20.0 \mathrm{~cm}^{3}$ of FA 2 into beaker B.
- Use the measuring cylinder to add $10.0 \mathrm{~cm}^{3}$ of FA 3 to beaker B.
- Add 10 drops of starch indicator to beaker \mathbf{B}.
- Add the contents of beaker \mathbf{A} to beaker \mathbf{B} and start timing immediately.
- Stir the mixture once and place the beaker on a white tile.
- Stop timing as soon as the solution turns blue-black.
- Record this reaction time to the nearest second in your results table.
- Wash out both beakers and shake to remove excess water.

Experiments 3-5

- Carry out three further experiments to investigate how the reaction time changes with different volumes of potassium peroxodisulfate, FA 1.
Note that the combined volume of FA 1 and distilled water must always be $20.00 \mathrm{~cm}^{3}$. Do not use a volume of FA 1 that is less than $6.00 \mathrm{~cm}^{3}$.

Keep FA 1, FA 2, FA 3 and the starch indicator for use in (e).

Calculating the rate of the reaction

The rate of the reaction can be represented by the formula shown.

$$
\text { rate }=\frac{500}{\text { reaction time in seconds }}
$$

Use this formula to calculate the rate for each of your five experiments.
Record all your results in a single table. You should include the volume of FA 1, the volume of distilled water, the reaction time and the reaction rate for each of your five experiments.

I	
II	
III	
IV	
V	
VI	
VII	
VIII	
IX	
X	

(b) On the grid on page 5 , plot the rate (y-axis) against the volume of FA 1 (x-axis). Include the origin in your plot. Draw a straight line of best fit and circle any clearly anomalous points.

(c) The volume of FA 1 is directly related to the concentration of potassium peroxodisulfate.

From your results, what can be stated about the relationship between the rate of reaction and the concentration of potassium peroxodisulfate?
\qquad
\qquad
(d) (i) Use your graph to calculate the reaction time you would expect to measure if you carried out an experiment using $5.00 \mathrm{~cm}^{3}$ of FA 1.
Show your working.
(ii) Assume that the error in the time measured for each reaction was $\pm 0.5 \mathrm{~s}$ in total. Calculate the maximum percentage error in the reaction time you measured in Experiment 1.
Show your working.
maximum percentage error $=$ \%
(iii) A student suggested that this error could be reduced if $0.0100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate were used in place of FA 3.

Do you agree with this student? Explain your answer.
\qquad
\qquad
\qquad
(iv) A student repeated Experiment 1 but used $0.100 \mathrm{moldm}^{-3}$ sodium thiosulfate in place of FA 3. The student found that the reaction mixture never turned blue-black.

Explain why.
\qquad
\qquad
\qquad
(e) (i) Using the same method as in (a), carry out an additional experiment to record the reaction time to the nearest second when the following solutions are mixed together.

- $\quad 10.00 \mathrm{~cm}^{3}$ of FA 1
- $\quad 20.0 \mathrm{~cm}^{3}$ of FA 2
- $5.0 \mathrm{~cm}^{3}$ of FA 3
- $\quad 15.00 \mathrm{~cm}^{3}$ of distilled water
- 10 drops of starch indicator
reaction time $=$ \qquad
(ii) Use your answer to (i) to estimate the reaction time that would be measured if the following solutions were mixed together.

DO NOT CARRY OUT THIS EXPERIMENT

- $\quad 10.00 \mathrm{~cm}^{3}$ of FA 1
- $\quad 20.0 \mathrm{~cm}^{3}$ of FA 2
- $20.0 \mathrm{~cm}^{3}$ of FA 3
- 10 drops of starch indicator

Explain your answer.

> estimated reaction time =
\qquad
\qquad
\qquad
\qquad

2 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
(a) FA 4 and FA 5 are aqueous solutions. Each solution contains two different cations and the sulfate anion.
(i) Carry out the following tests and record your observations.

test	observations		
	FA 4		
To a 1 cm depth of solution in a boiling tube, add aqueous sodium hydroxide, then			

(ii) Identify as many as possible of the cations in FA 4 and FA 5.

FA 4 contains the cation(s) \qquad .

FA 5 contains the cation(s) \qquad . .
(b) FA 6 is a salt containing either the sulfate anion or sulfite anion. You will first make a solution of FA 6.

- Rinse one of the $100 \mathrm{~cm}^{3}$ beakers with distilled water.
- Place all the sample of FA 6 into the beaker and add approximately $40 \mathrm{~cm}^{3}$ of distilled water.
- Stir the mixture until the solid has dissolved.

Select reagent(s) and carry out tests to identify the anion in FA 6. Record your results in the space below.

$$
\text { The formula of the anion in FA } 6 \text { is }
$$

(c) FA 7 is a solution containing one cation and the sulfate anion.

FA 8 is a solution containing the sodium cation and one of the anions from those listed in the Qualitative Analysis Notes.
(i) Carry out the following tests to determine the formulae of FA 7 and FA 8.

test	
To a 2 cm depth of FA 7 in a test-tube, add a 2 cm strip of magnesium.	
To a 1 cm depth of FA 7 in a test-tube add a 1 cm depth of FA 8 and shake the tube.	

(ii) The formula of FA 7 is \qquad .

The formula of FA 8 is \qquad .
(iii) Give the ionic equation for the reaction that takes place when magnesium is added to FA 7. Include state symbols.
\qquad

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{array}{\|l\|} \hline \text { iron(II), } \\ \mathrm{Fe}^{2+}(\mathrm{aq}) \end{array}$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, Br^{-}(aq)	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ ((partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-(\mathrm{aq})}$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-(a q)}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	'pops' with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	毋 ¢ ¢
๕吅	
	® 을
	\＆¢ 镸
$\text { in } \begin{gathered} \sigma \\ \hline \end{gathered}$	

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

